Statistic

Zambelli Lorenzo BSc Applied Mathematics

September 2021-October 2021

1 Introduction

Definition 1 Parameter A parameter is a constant that defines the population pmf/pdf f(x)

Definition 2 Statistic A statistic is an observable function $T : \mathbb{R}^n \to \mathbb{R}$ of a random sample (of a collection of random variables) such that T does not depend on any unknown parameters

Definition 3

sample mean :
$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

sample variance : $S_n^2 = \frac{1}{n-1} \sum_{i \le n} (X_i - \overline{X})^2$

Lemma 4

$$S_n^2 = \frac{1}{n-1} \sum_{i \le n} X_i^2 - \frac{n}{n-1} \overline{X}_n^2$$

Theorem 5 Unbiasedness of sample mean variance Let $X_1, ..., X_n$ be independent and identically distributed with mean μ and variance σ^2 . Then,

- 1. $\mathbb{E}(\overline{X}_n) = \mu$
- 2. $\mathbb{E}(S_n^2) = \sigma^2$

Remark:

- We write $X_1, ..., X_n \sim \mathcal{F}_{\theta}$ to indicate that $X_1, ..., X_n$ is a random sample of size *n* from a distribution \mathcal{F}_{θ} that depends on the parameter(s) θ
- For a given random sample $X_1, ..., X_n \sim \mathcal{F}_{\theta}$ we use for the joint density the notation $f_{\theta}(x_1, ..., x_n)$ instead of $f_{X_1, ..., X_n}(x_1, ..., x_n)$ and for the density of X_3 at x_3 as $f_{\theta}(x_3)$ instead of $f_{X_3}(x_3)$

Definition 6 Random Sample A random sample of size n is a sequence $X_1, ..., X_n$ of independent random variables all with the same pdf/pmf, say say f(x). We thus have

$$f_{\theta}(x_1, ..., x_n) = \prod_{1 \le i \le n} f_{\theta}(x_i)$$

we say that f is the **population pdf/pmf**

Terminology

- We use small letters for the realizations of random variables.
- Given realizations $x_1, ..., x_n$, we define: $\overline{x_n} := \frac{1}{n} \sum_{1 \le i \le n} x_i$

1.1 Useful knowledge form probability theory

Definition 7 (Quatiles) Consider a random variable with distribution \mathcal{F}_{θ} . The α -quatile q_{α} of the distribution \mathcal{F}_{θ} is defined as

$$\mathbb{P}_{\theta}(X \le q_{\alpha}) = \alpha \Leftrightarrow F_{\theta}(q_{\alpha}) = \alpha$$

where F_{θ} is the cumulative distribution function.

Remark: For symmetric distributions (with $f_{\theta}(x) = f_{\theta}(-x)$) we have that $q_{\alpha} = -q_{1-\alpha}$

Definition 8 (Some properties of the normal distributions) Consider a Gaussian distribution random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ and $a, b \in \mathbb{R}$:

- $(X+b) \sim \mathcal{N}(\mu+b,\sigma^2)$
- $a \cdot X \sim \mathcal{N}(a \cdot \mu, a^2 \cdot \sigma^2)$
- $a(X+b) \sim \mathcal{N}(a \cdot (\mu+b), a^2 \cdot \sigma^2)$

Now consider a random sample $X_i \sim \mathcal{N}(\mu, \sigma^2 \text{ for all } i = 1, ..., n, \text{ then}$

- $\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{1}{n}\sigma^2\right)$
- $(\overline{X}_n \mu) \sim \mathcal{N}\left(0, \frac{1}{n}\sigma^2\right)$
- $\frac{\sqrt{n}}{\sigma}(\overline{X}_n \mu)\mathcal{N}(0, 1)$

Definition 9 A sequence of $X_1, X_2, ...$ of random variables converges in probability to a constant $c \in \mathbb{R}$ if $\forall \epsilon > 0$:

$$\mathbb{P}(|X_n - c| > \epsilon) \to 0$$

which can be read as: "as n gets larger, it becomes very unlikely that Xn is far from c". We write $X_n \xrightarrow[n \to \infty]{\mathbb{P}} c$. Instead of "converges in probability" we sometimes also say converges weakly.

Theorem 10 Weak Law of Large Numbers Let $X_1, X_2, ...$ independent and identically distributed with $\mathbb{E}(X_i) = \mu$ and $\operatorname{Var}(X_i) = \sigma^2 < \infty$ then

$$\overline{X}_n \xrightarrow[\mathbb{P}]{} \mu \quad \lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| > \epsilon) = 0$$

Theorem 11 (Law of Large Numbers) Consider a random sample from a distribution \mathcal{F}_{θ}

$$X_1, ..., X_n \sim \mathcal{F}_{\theta}$$
 or short: $X \sim \mathcal{F}_{\theta}$

then for $n \to \infty$: $\overline{X}_n \xrightarrow{\mathbb{P}} \mathbb{E}(X_1)$ i.e convergence in probability.

More Generally, we have for any $k \in \mathbb{N}$:

for
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{\mathbb{P}} \mathbb{E}[X_1^k]$

Definition 12 converges in distribution A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for every $x \in \mathbb{R}$ at which $F_X(x)$ is continuous. We denote this by

$$X_n \xrightarrow[d]{n \to \infty} X$$

Lemma 13 If X is continuous and $X_n \xrightarrow{n \to \infty}_{d} X$, then

$$\mathbb{P}(X_n = x) \xrightarrow{n \to \infty} 0$$

for all $x \in \mathbb{R}$

Proposition 14 If X is continuous and $X_n \xrightarrow{n \to \infty} X$, then for every interval $I \subset \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}(X_n \in I) = \mathbb{P}(X \in I)$$

Theorem 15 Central Limit Theorem Let $X_1, X_2, ...$ be independent and identically distributed with mean μ and variance σ^2 (both finite). Then,

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{\sigma} \xrightarrow[d]{n \to \infty}{d} Z, \quad where \ Z \sim \mathcal{N}(0, 1)$$

Remarks:

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{\sigma} = \frac{\sum_{i=1}^{n} X_i - \mu n}{\sigma \sqrt{n}}$$

Theorem 16 Normal approximation to binomial When n is large and p is not too close to 0 or 1, we have the approximation

$$X \sim \operatorname{Bin}(n, p) \approx Y \sim \mathcal{N}(np, np(1-p))$$

where

$$\mathbb{P}(X \le b) \approx \int_{-\infty}^{b+\frac{1}{2}} f_Y(y) \, dy = F_Y\left(b+\frac{1}{2}\right), \quad \mathbb{P}(X \ge a) \approx \int_{a-\frac{1}{2}}^{\infty} f_Y(y) \, dy = 1 - F_Y\left(a-\frac{1}{2}\right)$$

this approximation holds if $n \ge 15$, $np \ge 5$ and $n(1-p) \ge 5$.

Theorem 17 Chebyshev Inequality Let X an random variable,

$$\mathbb{P}(|X - \mathbb{E}(X)| > x) \le \frac{\operatorname{Var}(X)}{x^2}, \quad x > 0$$

Theorem 18 (Markov Inequality) For a single random variable $X \sim \mathcal{F}_{\theta}$ with sample space $S_X \subseteq \mathbb{R}^+_0$, we have for all r > 0 the Markov inequality:

$$\mathbb{P}_{\theta}(X \ge r) \le \frac{E[X]}{r}$$

/faculty of Science and Engineering

Definition 19 (Chi-Square distribution) Consider a sample from a standard Gaussian distribution, $X \sim \mathcal{N}(0, 1)$. Then the random variable:

$$S = \sum_{i=1}^{n} X_i^2$$

is Chi-squared distributed with n degree of freedom, symbolically: $S \sim \chi_n^2$. And we have $\mathbb{E}(S) = n$ and $\operatorname{Var}(S) = 2n$

Remark: for any gaussian sample $X_n \sim \mathcal{N}(\mu, \sigma^2)$

$$S = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$$

Definition 20 (t-distribution) Consider a standard Gaussian distributed random variable X and a Chi-squared distributed random variable S with n degree of freedom. If X and S are statistically independent, then the random variable

$$T = \frac{X}{\sqrt{\frac{1}{n}S}}$$

is t-distributed with n degree of freedom, symbolically $T \sim t_n$ where $\mathbb{E}(T) = 0$ and fro n > 2 $\operatorname{Var}(T) = \frac{n}{n-2}$.

Remark: For $n \to \infty$ $t_n \xrightarrow{D} \mathcal{N}(0, 1)$

Definition 21 (F-distribution) Consider two Chi-squared distributed random variable S_1 and S_2 with n_1 and n_2 degree of freedom. If S_1 and S_2 are statistically independent, then the random variable

$$F = \frac{\frac{1}{n_1}S_1}{\frac{1}{n_2}S_2}$$

is F-distributed with parameters n_1 and n_2 , symbolically $F \sim F_{n_1,n_2}$, where for $n_2 > 2 \mathbb{E}(F) = \frac{n_2}{n_2-2}$

Theorem 22 (Cauchy Schwartz- Inequality) for two random variable Y, Z we have

$$|\operatorname{Cov}(Y,Z)| \le \sqrt{\operatorname{Var}(Y)\operatorname{Var}(Z)}$$

Theorem 23 (Jensen's inequality) Let $X \sim \mathcal{F}_{\theta}$ be a random variable on the possibly infinite interval (a, b) and let the function g() be differentiable and convex on (a, b). If $\mathbb{E}(X)$ and $\mathbb{E}(g(X)$ both exist, then

$$\mathbb{E}(g(X) \ge g(\mathbb{E}(X)))$$

Definition 24 (Information inequality) Let $X \sim \mathcal{F}_{\theta}$ be a random variable with $\theta \in \Theta$ and density $f_{\theta}()$. Moreover, let θ_0 be the true parameter. Then:

$$\mathbb{E}_{\theta_0}(\log(f_{\theta_0}(X))) \ge \mathbb{E}_{\theta_0}(\log(f_{\theta}(X)))$$

Theorem 25 (continuous mapping theorem) Given $\{X_n\}_{n\in\mathbb{N}}$ and a continuous function g(), we have:

1.
$$X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$$

2. $X \xrightarrow{D} X \Rightarrow g(X) \xrightarrow{D} g(X)$

2.
$$X_n \xrightarrow{D} X \Rightarrow g(X_n) \xrightarrow{D} g(X)$$

Theorem 26 (Slutsky's theorem) For two sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ with

$$X_n \xrightarrow{D} X \quad Y_n \xrightarrow{P} c$$

where X is a random variable and $c \in \mathbb{R}$ is a constant, we have

1. $X_n + Y_n \xrightarrow{D} X + c$ 2. $X_n \cdot Y_n \xrightarrow{D} c \cdot X$ 3. $\frac{X_n}{Y_r} \xrightarrow{D} \frac{1}{c} X \text{ if } c \neq 0$

1.2 Sufficiently of a Statistic

Definition 27 A statistic T is called sufficient for θ if the conditional density of X given T(X), $f_{\theta}(x|t(x))$ does not depend on θ . That is, if we have: $f_{\theta}(x|t(x)) = f(x|t(x))$

Hence, a statistic T is called sufficient for θ if we do not lose any information about θ when 'summarizing'

The sufficiency principle:

Consider two random samples X and Y of size n from the same distribution \mathcal{F}_{θ} and a statistic T that is sufficient for θ . Given two realizations X = x and Y = y with T(X) = T(Y), the inference about θ should be the same in both cases.

Theorem 28 (Factorization theorem) Given a random sample $X \sim \mathcal{F}_{\theta}$, then T is a sufficient statistic for θ if and only if the joint density $f_{\theta}(x)$ of X can be factorized into:

$$f_{\theta}(x) = g(t(x); \theta) \cdot h(x) \quad \text{for all } x = (x_1, ..., x_n) \in S_X$$

Definition 29 (Exponential family) A distribution \mathcal{F}_{θ} with θ containing d parameters $(|\theta| = d)$ belongs to the exponential family if the density f_{θ} of \mathcal{F}_{θ} can be decomposed into:

$$f_{\theta}(x) = h(x) \cdot \exp\left\{\sum_{d \le j \le 1} \mu_j(\theta) T_j(x) - A(\theta)\right\}$$

2 Estimators

The idea is how large should n be such that \overline{X}_n approximates μ well?

Definition 30 Let $X \sim \mathcal{F}_{\theta}$ be a random sample, then an **estimator** is a statistic T(X) that is used to estimate the unknown parameter θ .

Remark: If the purpose of the statistic is to estimate the parameter $\hat{\theta}$, the statistic is usually denoted $\hat{\theta}(X)$ or short $\hat{\theta}$.

2.1 Method of Moments (MM) Estimators

Consider a distribution \mathcal{F}_{θ} , where θ covers d unknown parameters ($|\theta| = d$) and a random sample from this distribution $X_1, ..., X_n \sim \mathcal{F}_{\theta}$.

LLN implies for k = 1, ..., d: $\frac{1}{n} \sum_{1 \le i \le n} X_i^k \xrightarrow{n \to \infty} \mathbb{E}[X_1^k]$

We then try to solve the system of d equations that follows from the LLN.

2.2 Likelihood and Maximum Likelihood

Let Θ denote the parameter space, i.e the space of all possible parameters θ

Definition 31 (Likelihood) The likelihood (function) is defined as $L : \Theta \to \mathbb{R}^+_0$ with $L(\theta) := f_{\theta}(x_1, ..., x_n)$

Remark:

- For any θ the likelihood tells us 'how likely' the realizations $x_1, ..., x_n$ are if θ is the true parameter.
- If the sample is from a discrete distribution, $L(\theta)$ is the probability of the realizations $x_1, ..., x_n$
- If the sample is from a continuous distributions, then $f_{\theta}(x_1, ..., x_n)$ and $L(\theta)$ are no probabilities.

Definition 32 (Maximum Likelihood (ML) Estimator) Given a random sample $X_1, ..., X_n \sim \mathcal{F}_{\theta}$ the Maximum Likelihood (ML) Estimator of $\theta \in \Theta$ is defined as:

$$\hat{\theta}_{ML} := \operatorname{argmax}_{\theta \in \Theta} \{ L(\theta) \}$$

where $L(\theta) = f_{\theta}(x_1, ..., x_n)$ is the likelihood

Important Trick: It is computationally much easier to maximize the log-likelihood $log(L(\theta))$. Since the logarithm is a monotone transformation, we have:

$$\theta_{ML} := \operatorname{argmax}_{\theta \in \Theta} \{ L(\theta) \} = \operatorname{argmax}_{\theta \in \Theta} \{ l(\theta) \}$$

where $l(\theta) = \log(L(\theta))$ is the log-likelihood

Definition 33 (Consistency of the ML estimator) Consider a random sample $X_n \sim \mathcal{F}_{\theta}$ with $\theta \in \Theta$ and densinty $f_{\theta}()$. Let θ_0 denote the true parameter. Under regulatory conditions, the ML estimator is consistent for θ_0

$$\hat{\theta}_{ML,n} \xrightarrow{P} \theta_0$$

Required conditions:

- 1. The sample space S_X does not depend on θ
- 2. θ_0 is an interior point of Θ

- 3. The log-likelihood $l_X(\theta)$ is differentiable in θ
- 4. θ_0 is the unique solution of $l'_X(\theta) = 0$

Definition 34 (Asymptotic Efficiency of the ML) Given a random sample $X_n \sim \mathcal{F}_{\theta}$ with parameter space Θ . The ML estimator $\hat{\theta}_{ML,n}$ of θ is an efficient estimator if:

$$\sqrt{n} \cdot (\hat{\theta}_{ML,n} - \theta) \xrightarrow{D} \mathcal{N}(0, \frac{1}{I(\theta)})$$

where $I(\theta)$ is the expected Fisher information, under the following regulatory condition

- 1. The parameter space $\Theta \subset \mathbb{R}$ must be open
- 2. The density $f_{\theta}()$ must be 3-times differentiable w.r.t θ
- 3. The sample space S_X is not allowed to depend on θ

2.3 Study the estimators

Definition 35 The bias of the estimator $\hat{\theta}_n$ is defined as

$$B(\hat{\theta}_n) = \mathbb{E}(\hat{\theta}_n) - \theta$$

Definition 36 The estimator $\hat{\theta}_n$ is an unbiased estimator of θ if for all $n \in \mathbb{N} : \mathbb{E}(\hat{\theta}_n) = \theta$

Definition 37 The estimator $\hat{\theta}_n$ is an asymptotically unbiased estimator of θ if for $n \to \infty$: $\mathbb{E}(\hat{\theta}_n) \to \theta$

Definition 38 (Mean Squared Error (MSE)) The Mean Squared Error of $\hat{\theta}_n$ is defined as:

$$MSE(\hat{\theta}_n) = \mathbb{E}\left[(\hat{\theta}_n - \theta)^2\right]$$

Remark: Note that $MSE(\hat{\theta}_n) = Var(\hat{\theta}_n) + B(\hat{\theta}_n)^2$

Definition 39 Let $X \sim \mathcal{F}_{\theta}$ be a random sample, and $g : \Theta \to \mathbb{R}$ be a function. The statistic T(X) is called an unbiased estimator of $g(\theta)$ if

$$\mathbb{E}(T(X)) = g(\theta)$$

Theorem 40 (The Cramer-Rao Theorem) Consider a sample of size $n X \sim \mathcal{F}_{\theta}$, and an unbiased estimator $\hat{\theta}$ of θ . Then (under certain regulatory condition)

$$\operatorname{Var}(\hat{\theta}) \ge \frac{1}{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} l_X(\theta)\right)^2\right]}$$

where $l_X(\theta)$ is the log-likelihood.

Remark:

$$\mathbb{E}\left[\left(\frac{\partial}{\partial\theta}l_X(\theta)\right)^2\right] = n \cdot \mathbb{E}\left[\left(\frac{\partial}{\partial\theta}l_{X_1}(\theta)\right)^2\right] = -\mathbb{E}\left[\left(\frac{\partial^2}{\partial\theta^2}l_X(\theta)\right)^2\right]$$

Definition 41 (Expected Fisher information (of a sample of size n = 1)) Given a random sample $X_n \sim \mathcal{F}_{\theta}$ we define the expected Fisher information (of a sample of size n = 1) as

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} l_{X_1}(\theta)\right)^2\right]$$

Definition 42 (Observerd Fisher information) Slutsky's theorem allows us to replace the expected Fisher information $I(\theta)$ by the observer Fisher information $I(\hat{\theta}_{ML,n})$, because

$$\hat{\theta}_{ML,n} \xrightarrow{D} \theta \Rightarrow I(\hat{\theta}_{ML,n}) \xrightarrow{D} I(\theta)$$

Theorem 43 (Rao-Blackwell Theorem) Consider a random sample $X \sim \mathcal{F}_{\theta}$ and a function $g: \Theta \to \mathbb{R}$. If we have

- 1. The statistic W = W(X) is unbiased estimator of $g(\theta)$
- 2. The statistic T = T(X) is sufficient for θ

we can define a new estimator

$$\phi(T) = \mathbb{E}(W|T)$$

with

- 1. $\mathbb{E}(\phi(T)) = g(\theta)$, i.e $\phi(T)$ is an unbiased estimator of $g(\theta)$
- 2. $\operatorname{Var}(\phi(T)) \leq \operatorname{Var}(W)$, i.e the variance of $\phi(T)$ is potentially smaller than the variance of W

2.3.1 Asymptotic Statistic

Definition 44 (Sequence of estimators) Consider a random sample $X_n \sim \mathcal{F}_{\theta}$ with increasing sample size. Then, $\hat{\theta}_n$ is a estimator for θ in $X_n \sim \mathcal{F}_{\theta}$. We define a sequence of estimators of θ { $\hat{\theta}$ }_{$n \in \mathbb{N}$}

Definition 45 Let $X_1, ..., X_n$ be a random sample of pmf/pdf with parameter θ . We say that $\hat{\theta}_n$ is consistent estimator of θ if

$$\forall \theta \in \Theta : \, \hat{\theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$$

Proposition 46 Given a random sample $X_n \sim \mathcal{F}_{\theta}$ and an estimator $\hat{\theta}_n$ of θ if we have

- 1. $\mathbb{E}(\hat{\theta}_n) \xrightarrow{n \to \infty} \theta \Leftrightarrow B(\hat{\theta}_n) \xrightarrow{n \to \infty} 0$
- 2. $\operatorname{Var}(\hat{\theta}_n) \xrightarrow{n \to \infty} 0$

then it follows that $\hat{\theta}_n$ is a consistent estimator

Definition 47 (Asymptotic Efficiency) Given a random sample $X_n \sim \mathcal{F}_{\theta}$ with parameter space Θ . An estimator $\hat{\theta}_n$ of θ is an efficient estimator if for all $\theta \in \Theta$:

$$\sqrt{n} \cdot (\hat{\theta}_n - \theta) \xrightarrow{D} \mathcal{N}(0, \frac{1}{I(\theta)})$$

where $I(\theta)$ is the expected Fisher information

3 Statistical test

Definition 48 (Statistical Hypothesis) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with parameter space Θ . We consider a partition of Θ :

$$\Theta = \Theta_0 \cup \Theta_1 \quad with \ \Theta_0 \cap \Theta_1 = \emptyset$$

A (statistical) hypothesis H is a statement about θ , i.e

- Null hypothesis $H_0: \theta \in \Theta_0$
- Alternative hypotheses $H_1: \theta \in \Theta_1$

Definition 49 (Statistical Hypothesis Test) Consider a random sample of size n, in short $X \sim \mathcal{F}_{\theta}$ with sample space S_X and parameter space Θ with partition

$$\Theta = \Theta_0 \cup \Theta_1$$
 with: $\Theta_0 \cap \Theta_1 = \emptyset$

Given the two hypothesis $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_1$, a statistical hypothesis test is a decision rule D that selects one of the two hypothesis based on realizations of X:

$$D: S_X \to \{H_0, H_1\}$$

We note that D(X) is a statistic.

Definition 50 (Test statistic) The test decision rule is based on a test statistic W = W(X)with $W : S_X \to \mathbb{R}$, where $\mathbb{R} = R \cup R^c$ with R be the rejection region. Then, the decision rule is define as follows

$$D(x) = \begin{cases} H_0 & W(x) \in R^c \\ H_1 & W(x) \in R \end{cases}$$

Given a realization X = x.

Remark: A good statistical test should fulfill:

- 1. $\mathbb{P}_{\theta \in \Theta_0}(W(X) \in R)$ is closed to 0
- 2. $\mathbb{P}_{\theta \in \Theta_1}(W(X) \in R)$ is closed to 1

Definition 51 (Power Function) The power function of a statistical test is defined as

$$\beta: \Theta \to [0,1]$$

with

 $\beta(\theta) = \mathbb{P}_{\theta}(W(X) \in R)$

where $\theta \in \Theta$ is the true parameter.

Remark:

- 1. For $\theta \in \Theta_0$ the power function should be low
- 2. For $\theta \in \Theta_1$ the power function should be high

3. A good test statistic has a high power $\beta(\theta)$ for $\theta \in \Theta_1$.

Definition 52 (Test level) A statistical test is called a test to the level $\alpha \in [0, 1]$ if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$$

That is, if under H_0 the probability to commit a type 1 error is bounded by α .

A statistical test can have two outcomes:

- You reject H_0 and you claim that H_1 is right.
- You do not reject H_0 , but you do not confirm H_0 either. You don't claim anything. (you do not have enough informatio to confirm H_0 .

In principle, you could make two mistakes:

- H_0 is right, but you claim H_1 is right. ('type 1 error')
- H_1 is right, but you claim H_0 is right. ('type 2 error')

Tests are constructed such that the probability for making an 'error of type 1' is lower than or equal to α . A widely used (conventional) 'test level' is $\alpha = 0.05$.

If the tests rejects the null hypothesis, statisticians say: 'The test was significant to the level α '

There exists two type of test, the two sided test problem and the one side test problem.

Definition 53 (Two sided test problem) A two sided test problem is a problem where we have $H_0: \mu = k \in \mathbb{R}$ and $H_1: \mu \notin k \in \mathbb{R}$. Let $W(X) \sim \mathcal{F}_{\mu}$, and this be a test level to α . In the picture we have W(X) distribution (we assumed for sake of simplicity that is a symmetric distribution) with z be the critical value.

Definition 54 (One sided test problem) A two sided test problem is a problem where we have $H_0: \mu > k$ or $\mu < k$ and $H_1: \mu < k$ or $\mu > k$, where $k \in \mathbb{R}$. Let $W(X) \sim \mathcal{F}_{\mu}$, and this be a test level to α . In the picture we have W(X) distribution (we assumed for sake of simplicity that is a symmetric distribution) with z be the critical value.

Definition 55 (Likelihood ratio (RT) test statistic) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with $\theta \in \Theta$ and a partition $\Theta = \Theta_0 \cup \Theta_1$, and the test problem

$$H_0: \theta \in \Theta_0 \quad H_1: \theta \in \Theta_1$$

The likelihood ratio test statistic is defined as:

$$\lambda(X) = \frac{\sup_{\theta \in \Theta_0} \{ L_X(\theta) \}}{\sup_{\theta \in \Theta_0 \cup \Theta_1} \{ L_X(\theta) \}}$$

where $L_X(\cdot)$ is the likelihood.

Remark: low values of $\lambda(X)$ suggest that θ is more likely to be in Θ_1 .

Definition 56 (Likelihood ratio test) A likelihood ratio test LRT makes use of the likelihood ratio test statistic. The LRT is based on the decision rule:

$$D_{\lambda}(X) = \begin{cases} H_0 & \lambda(X) > c \\ H_1 & \lambda(X) \le c \end{cases}$$

where $c \in [0,1]$. The test level α depends on the value of c.

Definition 57 (Uniform most powerful test (UMP)) a test D(X) is the uniform most powerful test if all other test $\tilde{D}(X)$ to the same level α have less power on Θ_1 . That is, if we have

$$\mathbb{P}_{\theta}(D(X) = H_1) \ge \mathbb{P}_{\theta}(D(X) = H_1)$$

for all $\theta \in \Theta_1$ and any level α test \tilde{D}

Lemma 58 (Neyman Person Lemma) Consider a random sample $X \sim \mathcal{F}_{\theta}$ and a simple test problem

$$H_0: \theta = \theta_0 \quad H_1: \theta = \theta_1$$

A test that employs as test statistic the density ratio

$$W(X) = \frac{f_{\theta_0}(X)}{f_{\theta_1}(X)}$$

and uses the rejection region $R = \{x \in S_X : W(X) < k\}$, so that the decision rule is

$$D(X) = \begin{cases} H_1 & W(X) < k \\ H_0 & W(X) \ge k \end{cases}$$

is the UMP test of level $\alpha = \mathbb{P}_{\theta_0}(W(X) < k)$

Lemma 59 Consider a random sample $X \sim \mathcal{F}_{\theta}$ with sufficient statistic T(X) and a simple test problem

$$H_0: \theta = \theta_0 \quad H_1: \theta = \theta_1$$

A test that employs as test statistic the sufficient statistic density ratio

$$W(X) = \frac{f_{T,\theta_0}(T(X))}{f_{T,\theta_1}(T(X))}$$

/faculty of Science and Engineering

and uses the rejection region $R = \{t \in S_T : W(t) < k\}$, so that the decision rule is

$$D(T(X)) = \begin{cases} H_1 & W(T(X)) < k \\ H_0 & W(T(X)) \ge k \end{cases}$$

is the UMP test of level $\alpha = \mathbb{P}_{\theta_0}(W(T(X)) < k)$

Definition 60 (Monotone Likelihood Ratio) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with sufficient statistic T(X). T(X) has a monotone likelihood ratio if

$$W(t) = \frac{f_{T,\theta_0}(t)}{f_{T,\theta_1}(t)}$$

is a monotone function of $t \in S_T$. For every k > 0 (W(X) < k) there is a $t_0 \in \mathbb{R}$ with

1. $t > t_0$ if monotonically decreasing

2. $t < t_0$ if monotonically increasing

Theorem 61 (Karlin-Ruben Theorem) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with sufficient statistic T(X) having a monotone likelihood ratio, and the composite test problem

$$H_0: \theta \le \theta_0 \quad H_1: \theta > \theta_0$$

- 1. If T(X) has a monotonically decreasing likelihood ration, then the test that reject H_0 if $T > t_0$ is UMP of the level $\alpha = \mathbb{P}_{\theta_0}(T(X) > t_0)$
- 2. If T(X) has a monotonically increasing likelihood ration, then the test that reject H_0 if $T < t_0$ is UMP of the level $\alpha = \mathbb{P}_{\theta_0}(T(X) < t_0)$

Definition 62 (Asymptotic LR test) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with parameter space Θ and the test problem

$$H_0: \theta \in \Theta_0 \quad H_1: \theta \in \Theta_1$$

where $\Theta = \Theta_0 \cup \Theta_1$ is a partition, and the likelihood ratio statistic

$$\lambda_n(X) = \frac{\sup_{\theta \in \Theta_0 \{ L_X(\theta) \}}}{\sup_{\theta \in \Theta_0 \cup \Theta_1} \{ L_X(\theta) \}}$$

under the following regulatory condition

- 1. $\Theta \subset \mathbb{R}$ must be an open set
- 2. The sample space S_X is not allowed to depend on θ
- 3. The density $f_{\theta}(x)$ must be 3-times differentiable w.r.t θ

we have under H_0

$$-2\log(\lambda_n(X)) \xrightarrow{D} \chi_1^2$$

Definition 63 (P-value) The p-value is the lowest test level α to which H_0 could have been rejected.

Definition 64 (One sample t-test (two sided)) Consider a sample from a Gaussian distribution $X_n \sim \mathcal{N}(\mu, \sigma^2)$ with two unknown parameters μ and σ^2 , and the test problem

$$H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0$$

Under the null-hypothesis, we have

$$T(X) = \frac{\sqrt{n} \cdot (\overline{X}_n - \mu_0)}{\sqrt{S_n^2}} \sim t_{n-1}$$

A two-sided one sample t-test to the level α employs the decision rule:

$$D(X) = \begin{cases} H_0 & T(X) \in [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}] \\ H_1 & otherwise \end{cases}$$

where $q_{\frac{\alpha}{2}}$ and $q_{1-\frac{\alpha}{2}}$ are the quantiles of the t_{n-1} distribution

Definition 65 (One sample t-test (one sided) version 1) Consider a sample from a Gaussian distribution $X_n \sim \mathcal{N}(\mu, \sigma^2)$ with two unknown parameters μ and σ^2 , and the test problem

$$H_0: \mu \le \mu_0 \quad H_1: \mu \not> \mu_0$$

Under the null-hypothesis, we have

$$T(X) = \frac{\sqrt{n} \cdot (\overline{X}_n - \mu_0)}{\sqrt{S_n^2}} \sim t_{n-1}$$

A one-sided one sample t-test to the level α employs the decision rule:

$$D(X) = \begin{cases} H_0 & T(X) \le q_{1-\alpha} \\ H_1 & T(X) > q_{1-\alpha} \end{cases}$$

where $q_{1-\alpha}$ is the quantiles of the t_{n-1} distribution. Note that here the likelihood ratio is monotonically increasing.

Definition 66 (One sample t-test (one sided) version 2) Consider a sample from a Gaussian distribution $X_n \sim \mathcal{N}(\mu, \sigma^2)$ with two unknown parameters μ and σ^2 , and the test problem

$$H_0: \mu \ge \mu_0 \quad H_1: \mu \not< \mu_0$$

Under the null-hypothesis, we have

$$T(X) = \frac{\sqrt{n} \cdot (\overline{X}_n - \mu_0)}{\sqrt{S_n^2}} \sim t_{n-1}$$

A one-sided one sample t-test to the level α employs the decision rule:

$$D(X) = \begin{cases} H_0 & T(X) \ge q_\alpha \\ H_1 & T(X) < q_\alpha \end{cases}$$

where q_{α} is the quantiles of the t_{n-1} distribution. Note that here the likelihood ratio is monotonically increasing

/faculty of Science and Engineering

Definition 67 (Two sample t-test (unpaired, two-sided)) Consider two idependent Guassian samples $X_n \sim \mathcal{N}(\mu_x, \sigma^2)$ and $Y_m \sim \mathcal{N}(\mu_y, \sigma^2)$, where μ_x, μ_y, σ^2 are unknown parameters, and the test problem

$$H_0: \mu_x - \mu_y = \mu^* \quad H_1: \mu_x - \mu_y \neq \mu^*$$

Under H_0 we have

$$T(X,Y) = \frac{\overline{X}_n - \overline{Y}_m - \mu^*}{\sqrt{S_{n,m}^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}$$

where

$$S_{n,m}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2} + \sum_{i=1}^{m} (Y_{i} - \overline{Y}_{m})^{2}}{n + m - 2}$$

An unpaired two sample t-test to the level α employs the decision rule

$$D(X) = \begin{cases} H_0 & T(X,Y) \in [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}] \\ H_1 & otherwise \end{cases}$$

where $q_{\frac{\alpha}{2}}$ and $q_{1-\frac{\alpha}{2}}$ are the quantiles of the t_{n+m-2} distribution

Remark about statistical test structure:

- There is a test problem H_0 vs H_1
- There is a statistical test that can be computed from the observed data
- Under H_0 the test statistic has a well-known distribution
- the user specifies the test level $\alpha \in [0, 1]$
- A rejection region is specified such that under the null-hypothesis the probability that the test statistic takes values in the rejection region is bounded by α (erro of type 1, i.e rejecting H_0 , thought is true).
- if the test statistic takes value in the rejection region, the alternative hypothesis is confirmed

3.1 Confidence interval

Definition 68 (Confidence interval (CI)) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with $\theta \in \Theta$. An interval [L(X), U(X)] that contains the unknown parameter θ with probability $1 - \alpha$ is called a $1 - \alpha$ confidence interval for θ we have

$$\forall \theta \in \Theta : \mathbb{P}_{\theta}(L(X) \le \theta \le U(X)) \ge 1 - \alpha \quad \Leftrightarrow \inf_{\theta \in \Theta} \left\{ p_{\theta}(L(X) \le \theta \le U(X)) \right\} \ge 1 - \alpha$$

where U(X), L(X) are statistic.

Definition 69 (Connection between tests and CI) Consider a random sample $X \sim \mathcal{F}_{\theta}$ with $\theta \in \Theta$. For every $\theta_0 \in \Theta$ we can formulate the test problem

$$H_0: \theta = \theta_0 \quad H_1: \theta \neq \theta_0$$

Assume we can for each $\theta_0 \in \Theta$ perform a statistical level α test with test statistic W(X) and rejection region R_{θ_0} . Then a $1 - \alpha$ confidence interval for θ_0 is given by

$$CI(X) = \{\theta : W(X) \notin R_{\theta_0}\}$$

Remark: Note that the true parameter θ_0 is in CI(X) with probability $1 - \alpha$.

Definition 70 (Wald test and confidence intervals) Recall the definition of asymptotically efficient for the maximul likelihood estimator of a random sample $X \in \mathcal{F}_{\theta}$. Then, the asymptotic $1 - \alpha$ confidence interval for θ is

$$\hat{\theta}_{ML,n} \pm q_{1-\frac{\alpha}{2}} \frac{1}{\sqrt{n \cdot I(\hat{\theta}_{ML,n})}}$$