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1 Introduction

Definition 1 Parameter A parameter is a constant that defines the population pmf/pdf
f(x)

Definition 2 Statistic A statistic is an observable function T : Rn → Rof a random sample
(of a collection of random variables) such that T does not depend on any unknown parameters

Definition 3

sample mean : Xn =
X1 + · · ·+Xn

n

sample variance : S2
n =

1

n− 1

∑
i≤n

(Xi −X)2

Lemma 4

S2
n =

1

n− 1

∑
i≤n

X2
i −

n

n− 1
X

2
n

Theorem 5 Unbiasedness of sample mean variance Let X1, ..., Xn be independent and
identically distributed with mean µ and variance σ2. Then,

1. E(Xn) = µ

2. E(S2
n) = σ2

Remark:

• We write X1, ..., Xn ∼ Fθ to indicate that X1, ..., Xn is a random sample of size n from
a distribution Fθ that depends on the parameter(s) θ

• For a given random sample X1, ..., Xn ∼ Fθ we use for the joint density the notation
fθ(x1, ..., xn) instead of fX1,...,Xn(x1, ..., xn) and for the density of X3 at x3 as fθ(x3)
instead of fX3(x3)

Definition 6 Random Sample A random sample of size n is a sequence X1, ..., Xn of
independent random variables all with the same pdf/pmf, say say f(x). We thus have

fθ(x1, ..., xn) =
∏

1≤i≤n
fθ(xi)

we say that f is the population pdf/pmf

Terminology

• We use small letters for the realizations of random variables.

• Given realizations x1, ..., xn, we define: xn := 1
n

∑
1≤i≤n xi
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1.1 Useful knowledge form probability theory

Definition 7 (Quatiles) Consider a random variable with distribution Fθ. The α-quatile
qα of the distribution Fθ is defined as

Pθ(X ≤ qα) = α⇔ Fθ(qα) = α

where Fθ is the cumulative distribution function.

Remark: For symmetric distributions (with fθ(x) = fθ(−x)) we have that qα = −q1−α

Definition 8 (Some properties of the normal distributions) Consider a Gaussian dis-
tribution random variable X ∼ N (µ, σ2) and a, b ∈ R:

• (X + b) ∼ N (µ+ b, σ2)

• a ·X ∼ N (a · µ, a2 · σ2)

• a(X + b) ∼ N (a · (µ+ b), a2 · σ2)

Now consider a random sample Xi ∼ N (µ, σ2 for all i = 1, ..., n, then

• Xn ∼ N
(
µ, 1

nσ
2
)

• (Xn − µ) ∼ N
(
0, 1

nσ
2
)

•
√
n
σ (Xn − µ)N (0, 1)

Definition 9 A sequence of X1, X2, ... of random variables converges in probability to a con-
stant c ∈ R if ∀ε > 0:

P(|Xn − c| > ε)→ 0

which can be read as: “as n gets larger, it becomes very unlikely that Xn is far from c”. We

write Xn
P−−−→

n→∞
c. Instead of “converges in probability” we sometimes also say converges

weakly.

Theorem 10 Weak Law of Large Numbers Let X1, X2, ... independent and identically
distributed with E(Xi) = µ and Var(Xi) = σ2 <∞ then

Xn −→
P
µ lim

n→∞
P(|Xn − µ| > ε) = 0

Theorem 11 (Law of Large Numbers) Consider a random sample from a distribution
Fθ

X1, ..., Xn ∼ Fθ or short: X ∼ Fθ

then for n→∞: Xn
P−→ E(X1) i.e convergence in probability.

More Generally, we have for any k ∈ N:

for n→∞ :
1

n

n∑
i=1

Xk
i

P−→ E[Xk
1 ]
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Definition 12 converges in distribution A sequence of random variables X1, X2, ... con-
verges in distribution to a random variable X if

lim
n→∞

FXn(x) = FX(x)

for every x ∈ R at which FX(x) is continuous. We denote this by

Xn
n→∞−−−→
d

X

Lemma 13 If X is continuous and Xn
n→∞−−−→
d

X, then

P(Xn = x)
n→∞−−−→ 0

for all x ∈ R

Proposition 14 If X is continuous and Xn
n→∞−−−→
d

X, then for every interval I ⊂ R,

lim
n→∞

P(Xn ∈ I) = P(X ∈ I)

Theorem 15 Central Limit Theorem Let X1, X2, ... be independent and identically dis-
tributed with mean µ and variance σ2 (both finite). Then,

√
n · X − µ

σ

n→∞−−−→
d

Z, where Z ∼ N (0, 1)

Remarks:
√
n · X − µ

σ
=

∑n
i=1Xi − µn
σ
√
n

Theorem 16 Normal approximation to binomial When n is large and p is not too close
to 0 or 1, we have the approximation

X ∼ Bin(n, p) ≈ Y ∼ N (np, np(1− p))

where

P(X ≤ b) ≈
∫ b+ 1

2

−∞
fY (y) dy = FY

(
b+

1

2

)
, P(X ≥ a) ≈

∫ ∞
a− 1

2

fY (y) dy = 1− FY
(
a− 1

2

)
this approximation holds if n ≥ 15, np ≥ 5 and n(1− p) ≥ 5.

Theorem 17 Chebyshev Inequality Let X an random variable,

P(|X − E(X)| > x) ≤ Var(X)

x2
, x > 0

Theorem 18 (Markov Inequality) For a single random variable X ∼ Fθ with sample
space SX ⊆ R+

0 , we have for all r > 0 the Markov inequality:

Pθ(X ≥ r) ≤
E[X]

r
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Definition 19 (Chi-Square distribution) Consider a sample from a standard Gaussian
distribution, X ∼ N (0, 1). Then the random variable:

S =
n∑
i=1

X2
i

is Chi-squared distributed with n degree of freedom, symbolically: S ∼ χ2
n. And we have

E(S) = n and Var(S) = 2n

Remark: for any gaussian sample Xn ∼ N (µ, σ2)

S =
n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n

Definition 20 (t-distribution) Consider a standard Gaussian distributed random variable
X and a Chi-squared distributed random variable S with n degree of freedom. If X and S are
statistically independent, then the random variable

T =
X√
1
nS

is t-distributed with n degree of freedom, symbolically T ∼ tn where E(T ) = 0 and fro n > 2
Var(T ) = n

n−2 .

Remark: For n→∞ tn
D−→ N (0, 1)

Definition 21 (F-distribution) Consider two Chi-squared distributed random variable S1

and S2 with n1 and n2 degree of freedom. If S1 and S2 are statistically independent, then the
random variable

F =
1
n1
S1

1
n2
S2

is F-distributed with parameters n1 and n2, symbolically F ∼ Fn1,n2, where for n2 > 2 E(F ) =
n2
n2−2

Theorem 22 (Cauchy Schwartz- Inequality) for two random variable Y,Z we have

|Cov(Y, Z)| ≤
√

Var(Y ) Var(Z)

Theorem 23 (Jensen’s inequality) Let X ∼ Fθ be a random variable on the possibly
infinite interval (a, b) and let the function g() be differentiable and convex on (a, b). If E(X)
and E(g(X) both exist, then

E(g(X) ≥ g(E(X))

Definition 24 (Information inequality) Let X ∼ Fθ be a random variable with θ ∈ Θ
and density fθ(). Moreover, let θ0 be the true parameter. Then:

Eθ0(log(fθ0(X))) ≥ Eθ0(log(fθ(X)))
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Theorem 25 (continuous mapping theorem) Given {Xn}n∈N and a continuous func-
tion g(), we have:

1. Xn
P−→ X ⇒ g(Xn)

P−→ g(X)

2. Xn
D−→ X ⇒ g(Xn)

D−→ g(X)

Theorem 26 (Slutsky’s theorem) For two sequence of random variables {Xn}n∈N and
{Yn}n∈N with

Xn
D−→ X Yn

P−→ c

where X is a random variable and c ∈ R is a constant, we have

1. Xn + Yn
D−→ X + c

2. Xn · Yn
D−→ c ·X

3. Xn
Yn

D−→ 1
cX if c 6= 0

1.2 Sufficiently of a Statistic

Definition 27 A statistic T is called sufficient for θ if the conditional density of X given
T (X), fθ(x|t(x)) does not depend on θ. That is, if we have: fθ(x|t(x)) = f(x|t(x))

Hence, a statistic T is called sufficient for θ if we do not lose any information about θ
when ‘summarizing’

The sufficiency principle:
Consider two random samples X and Y of size n from the same distribution Fθ and a statistic
T that is sufficient for θ. Given two realizations X = x and Y = y with T (X) = T (Y ), the
inference about θ should be the same in both cases.

Theorem 28 (Factorization theorem) Given a random sample X ∼ Fθ, then T is a
sufficient statistic for θ if and only if the joint density fθ(x) of X can be factorized into:

fθ(x) = g(t(x); θ) · h(x) for all x = (x1, ..., xn) ∈ SX

Definition 29 (Exponential family) A distribution Fθ with θ containing d parameters
(|θ| = d) belongs to the exponential family if the density fθ of Fθ can be decomposed into:

fθ(x) = h(x) · exp

 ∑
d≤j≤1

µj(θ)Tj(x)−A(θ)


2 Estimators

The idea is how large should n be such that Xn approximates µ well?

Definition 30 Let X ∼ Fθ be a random sample, then an estimator is a statistic T (X) that
is used to estimate the unknown parameter θ.

Remark: If the purpose of the statistic is to estimate the parameter θ, the statistic is
usually denoted θ̂(X) or short θ̂.
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2.1 Method of Moments (MM) Estimators

Consider a distribution Fθ, where θ covers d unknown parameters (|θ| = d) and a random
sample from this distribution X1, ..., Xn ∼ Fθ.

LLN implies for k = 1, ..., d: 1
n

∑
1≤i≤nX

k
i

n→∞−−−→
P

E[Xk
1 ]

We then try to solve the system of d equations that follows from the LLN.

2.2 Likelihood and Maximum Likelihood

Let Θ denote the parameter space, i.e the space of all possible parameters θ

Definition 31 (Likelihood) The likelihood (function) is defined as L : Θ → R+
0 with

L(θ) := fθ(x1, ..., xn)

Remark:

• For any θ the likelihood tells us ’how likely’ the realizations x1, ..., xn are if θ is the true
parameter.

• If the sample is from a discrete distribution, L(θ) is the probability of the realizations
x1, .., xn

• If the sample is from a continuous distributions, then fθ(x1, ..., xn) and L(θ) are no
probabilities.

Definition 32 (Maximum Likelihood (ML) Estimator) Given a random sample X1, ..., Xn ∼
Fθ the Maximum Likelihood (ML) Estimator of θ ∈ Θ is defined as:

θ̂ML := argmaxθ∈Θ{L(θ)}

where L(θ) = fθ(x1, ..., xn) is the likelihood

Important Trick: It is computationally much easier to maximize the log-likelihood
log(L(θ)). Since the logarithm is a monotone trasformation, we have:

θ̂ML := argmaxθ∈Θ{L(θ)} = argmaxθ∈Θ{l(θ)}

where l(θ) = log(L(θ)) is the log-likelihood

Definition 33 (Consistency of the ML estimator) Consider a random sample Xn ∼ Fθ
with θ ∈ Θ and densinty fθ(). Let θ0 denote the true parameter. Under regulatory conditions,
the ML estimator is consistent for θ0

θ̂ML,n
P−→ θ0

Required conditions:

1. The sample space SX does not depend on θ

2. θ0 is an interior point of Θ
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3. The log-likelihood lX(θ) is differentiable in θ

4. θ0 is the unique solution of l′X(θ) = 0

Definition 34 (Asymptotic Efficiency of the ML) Given a random sample Xn ∼ Fθ
with parameter space Θ. The ML estimator θ̂ML,n of θ is an efficient estimator if:

√
n · (θ̂ML,n − θ)

D−→ N (0,
1

I(θ)

where I(θ) is the expected Fisher information, under the following regulatory condition

1. The parameter space Θ ⊂ R must be open

2. The density fθ() must be 3-times differentiable w.r.t θ

3. The sample space SX is not allowed to depend on θ

2.3 Study the estimators

Definition 35 The bias of the estimator θ̂n is defined as

B(θ̂n) = E(θ̂n)− θ

Definition 36 The estimator θ̂n is an unbiased estimator of θ if for all n ∈ N : E(θ̂n) = θ

Definition 37 The estimator θ̂n is an asymptotically unbiased estimator of θ if for n→∞ :
E(θ̂n)→ θ

Definition 38 (Mean Squared Error (MSE)) The Mean Squared Error of θ̂n is defined
as:

MSE(θ̂n) = E
[
(θ̂n − θ)2

]
Remark: Note that MSE(θ̂n) = Var(θ̂n) +B(θ̂n)2

Definition 39 Let X ∼ Fθ be a random sample, and g : Θ→ R be a function. The statistic
T (X) is called an unbiased estimator of g(θ) if

E(T (X)) = g(θ)

Theorem 40 (The Cramer-Rao Theorem) Consider a sample of size n X ∼ Fθ, and an
unbiased estimator θ̂ of θ. Then (under certain regulatory condition)

Var(θ̂) ≥ 1

E
[(

∂
∂θ lX(θ)

)2]
where lX(θ) is the log-likelihood.

Remark:

E

[(
∂

∂θ
lX(θ)

)2
]

= n · E

[(
∂

∂θ
lX1(θ)

)2
]

= −E

[(
∂2

∂θ2
lX(θ)

)2
]
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Definition 41 (Expected Fisher information (of a sample of size n = 1)) Given a ran-
dom sample Xn ∼ Fθ we define the expected Fisher information (of a sample of size n = 1)
as

I(θ) = E

[(
∂

∂θ
lX1(θ)

)2
]

Definition 42 (Observerd Fisher information) Slutsky’s theorem allows us to replace
the expected Fisher information I(θ) by the observer Fisher information I(θ̂ML,n), because

θ̂ML,n
D−→ θ ⇒ I(θ̂ML,n)

D−→ I(θ)

Theorem 43 (Rao-Blackwell Theorem) Consider a random sample X ∼ Fθ and a func-
tion g : Θ→ R. If we have

1. The statistic W = W (X) is unbiased estimator of g(θ)

2. The statistic T = T (X) is sufficient for θ

we can define a new estimator
φ(T ) = E(W |T )

with

1. E(φ(T )) = g(θ), i.e φ(T ) is an unbiased estimator of g(θ)

2. Var(φ(T )) ≤ Var(W ), i.e the variance of φ(T ) is potentially smaller than the variance
of W

2.3.1 Asymptotic Statistic

Definition 44 (Sequence of estimators) Consider a random sample Xn ∼ Fθ with in-
creasing sample size. Then, θ̂n is a estimator for θ in Xn ∼ Fθ. We define a sequence of
estimators of θ {θ̂}n∈N

Definition 45 Let X1, ..., Xn be a random sample of pmf/pdf with parameter θ. We say that
θ̂n is consistent estimator of θ if

∀θ ∈ Θ : θ̂n
P−−−→

n→∞
θ

Proposition 46 Given a random sample Xn ∼ Fθ and an estimator θ̂n of θ if we have

1. E(θ̂n)
n→∞−−−→ θ ⇔ B(θ̂n)

n→∞−−−→ 0

2. Var(θ̂n)
n→∞−−−→ 0

then it follows that θ̂n is a consistent estimator

Definition 47 (Asymptotic Efficiency) Given a random sample Xn ∼ Fθ with parameter
space Θ. An estimator θ̂n of θ is an efficient estimator if for all θ ∈ Θ:

√
n · (θ̂n − θ)

D−→ N (0,
1

I(θ)

where I(θ) is the expected Fisher information
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3 Statistical test

Definition 48 (Statistical Hypothesis) Consider a random sample X ∼ Fθ with param-
eter space Θ. We consider a partition of Θ:

Θ = Θ0 ∪Θ1 with Θ0 ∩Θ1 = ∅

A (statistical) hypothesis H is a statement about θ, i.e

• Null hypothesis H0 : θ ∈ Θ0

• Alternative hypotheses H1 : θ ∈ Θ1

Definition 49 (Statistical Hypothesis Test) Consider a random sample of size n, in
short X ∼ Fθ with sample space SX and parameter space Θ with partition

Θ = Θ0 ∪Θ1 with: Θ0 ∩Θ1 = ∅

Given the two hypothesis H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, a statistical hypothesis test is a
decision rule D that selects one of the two hypothesis based on realizations of X:

D : SX → {H0, H1}

We note that D(X) is a statistic.

Definition 50 (Test statistic) The test decision rule is based on a test statistic W = W (X)
with W : SX → R, where R = R ∪Rc with R be the rejection region. Then, the decision rule
is define as follows

D(x) =

{
H0 W (x) ∈ Rc

H1 W (x) ∈ R

Given a realization X = x.

Remark: A good statistical test should fulfill:

1. Pθ∈Θ0(W (X) ∈ R) is closed to 0

2. Pθ∈Θ1(W (X) ∈ R) is closed to 1

Definition 51 (Power Function) The power function of a statistical test is defined as

β : Θ→ [0, 1]

with
β(θ) = Pθ(W (X) ∈ R)

where θ ∈ Θ is the true parameter.

Remark:

1. For θ ∈ Θ0 the power function should be low

2. For θ ∈ Θ1 the power function should be high
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3. A good test statistic has a high power β(θ) for θ ∈ Θ1.

Definition 52 (Test level) A statistical test is called a test to the level α ∈ [0, 1] if

sup
θ∈Θ0

β(θ) ≤ α

That is, if under H0 the probability to commit a type 1 error is bounded by α.

A statistical test can have two outcomes:

• You reject H0 and you claim that H1 is right.

• You do not reject H0, but you do not confirm H0 either. You don’t claim anything. (
you do not have enough informatio to confirm H0.

In principle, you could make two mistakes:

• H0 is right, but you claim H1 is right. (‘type 1 error’)

• H1 is right, but you claim H0 is right. (‘type 2 error’)

Tests are constructed such that the probability for making an ‘error of type 1’ is lower
than or equal to α. A widely used (conventional) ‘test level’ is α = 0.05.

If the tests rejects the null hypothesis, statisticians say: ’The test was significant to the
level α’

There exists two type of test, the two sided test problem and the one side test problem.

Definition 53 (Two sided test problem) A two sided test problem is a problem where we
have H0 : µ = k ∈ R and H1 : µ 6∈ k ∈ R. Let W (X) ∼ Fµ, and this be a test level to α. In
the picture we have W (X) distribution (we assumed for sake of simplicity that is a symmetric
distribution) with z be the critical value.

Definition 54 (One sided test problem) A two sided test problem is a problem where we
have H0 : µ > k or µ < k and H1 : µ < k or µ > k, where k ∈ R. Let W (X) ∼ Fµ, and
this be a test level to α. In the picture we have W (X) distribution (we assumed for sake of
simplicity that is a symmetric distribution) with z be the critical value.
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Definition 55 (Likelihood ratio (RT) test statistic) Consider a random sample X ∼
Fθ with θ ∈ Θ and a partition Θ = Θ0 ∪Θ1, and the test problem

H0 : θ ∈ Θ0 H1 : θ ∈ Θ1

The likelihood ratio test statistic is defined as:

λ(X) =
supθ∈Θ0

{LX(θ)}
supθ∈Θ0∪Θ1

{LX(θ)}

where LX(·) is the likelihood.

Remark:low values of λ(X) suggest that θ is more likely to be in Θ1.

Definition 56 (Likelihood ratio test) A likelihood ratio test LRT makes use of the like-
lihood ratio test statistic. The LRT is based on the decision rule:

Dλ(X) =

{
H0 λ(X) > c

H1 λ(X) ≤ c

where c ∈ [0, 1]. The test level α depends on the value of c.

Definition 57 (Uniform most powerful test (UMP)) a test D(X) is the uniform most
powerful test if all other test D̃(X) to the same level α have less power on Θ1. That is, if we
have

Pθ(D(X) = H1) ≥ Pθ(D̃(X) = H1)

for all θ ∈ Θ1 and any level α test D̃

Lemma 58 (Neyman Person Lemma) Consider a random sample X ∼ Fθ and a simple
test problem

H0 : θ = θ0 H1 : θ = θ1

A test that employs as test statistic the density ratio

W (X) =
fθ0(X)

fθ1(X)

and uses the rejection region R = {x ∈ SX : W (X) < k}, so that the decision rule is

D(X) =

{
H1 W (X) < k

H0 W (X) ≥ k

is the UMP test of level α = Pθ0(W (X) < k)

Lemma 59 Consider a random sample X ∼ Fθ with sufficient statistic T (X) and a simple
test problem

H0 : θ = θ0 H1 : θ = θ1

A test that employs as test statistic the sufficient statistic density ratio

W (X) =
fT,θ0(T (X))

fT,θ1(T (X))
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and uses the rejection region R = {t ∈ ST : W (t) < k}, so that the decision rule is

D(T (X)) =

{
H1 W (T (X)) < k

H0 W (T (X)) ≥ k

is the UMP test of level α = Pθ0(W (T (X)) < k)

Definition 60 (Monotone Likelihood Ratio) Consider a random sample X ∼ Fθ with
sufficient statistic T (X). T (X) has a monotone likelihood ratio if

W (t) =
fT,θ0(t)

fT,θ1(t)

is a monotone function of t ∈ ST . For every k > 0 (W (X) < k) there is a t0 ∈ R with

1. t > t0 if monotonically decreasing

2. t < t0 if monotonically increasing

Theorem 61 (Karlin-Ruben Theorem) Consider a random sample X ∼ Fθ with suffi-
cient statistic T (X) having a monotone likelihood ratio, and the composite test problem

H0 : θ ≤ θ0 H1 : θ > θ0

1. If T (X) has a monotonically decreasing likelihood ration, then the test that reject H0 if
T > t0 is UMP of the level α = Pθ0(T (X) > t0)

2. If T (X) has a monotonically increasing likelihood ration, then the test that reject H0 if
T < t0 is UMP of the level α = Pθ0(T (X) < t0)

Definition 62 (Asymptotic LR test) Consider a random sample X ∼ Fθ with parameter
space Θ and the test problem

H0 : θ ∈ Θ0 H1 : θ ∈ Θ1

where Θ = Θ0 ∪Θ1 is a partition, and the likelihood ratio statistic

λn(X) =
supθ∈Θ0{LX(θ)}

supθ∈Θ0∪Θ1
{LX(θ)}

under the following regulatory condition

1. Θ ⊂ R must be an open set

2. The sample space SX is not allowed to depend on θ

3. The density fθ(x) must be 3-times differentiable w.r.t θ

we have under H0

−2 log(λn(X))
D−→ χ2

1

Definition 63 (P-value) The p-value is the lowest test level α to which H0 could have been
rejected.
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Definition 64 (One sample t-test (two sided)) Consider a sample from a Gaussian dis-
tribution Xn ∼ N (µ, σ2) with two unknown parameters µ and σ2, and the test problem

H0 : µ = µ0 H1 : µ 6= µ0

Under the null-hypothesis, we have

T (X) =

√
n · (Xn − µ0)√

S2
n

∼ tn−1

A two-sided one sample t-test to the level α employs the decision rule:

D(X) =

{
H0 T (X) ∈ [qα

2
, q1−α

2
]

H1 otherwise

where qα
2

and q1−α
2

are the quantiles of the tn−1 distribution

Definition 65 (One sample t-test (one sided) version 1) Consider a sample from a Gaus-
sian distribution Xn ∼ N (µ, σ2) with two unknown parameters µ and σ2, and the test problem

H0 : µ ≤ µ0 H1 : µ 6> µ0

Under the null-hypothesis, we have

T (X) =

√
n · (Xn − µ0)√

S2
n

∼ tn−1

A one-sided one sample t-test to the level α employs the decision rule:

D(X) =

{
H0 T (X) ≤ q1−α

H1 T (X) > q1−α

where q1−α is the quantiles of the tn−1 distribution. Note that here the likelihood ratio is
monotonically increasing.

Definition 66 (One sample t-test (one sided) version 2) Consider a sample from a Gaus-
sian distribution Xn ∼ N (µ, σ2) with two unknown parameters µ and σ2, and the test problem

H0 : µ ≥ µ0 H1 : µ 6< µ0

Under the null-hypothesis, we have

T (X) =

√
n · (Xn − µ0)√

S2
n

∼ tn−1

A one-sided one sample t-test to the level α employs the decision rule:

D(X) =

{
H0 T (X) ≥ qα
H1 T (X) < qα

where qα is the quantiles of the tn−1 distribution. Note that here the likelihood ratio is mono-
tonically increasing
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Definition 67 (Two sample t-test (unpaired, two-sided)) Consider two idependent Guas-
sian samples Xn ∼ N (µx, σ

2) and Ym ∼ N (µy, σ
2), where µx, µy, σ

2 are unknown parameters,
and the test problem

H0 : µx − µy = µ? H1 : µx − µy 6= µ?

Under H0 we have

T (X,Y ) =
Xn − Y m − µ?√
S2
n,m

(
1
n + 1

m

) ∼ tn+m−2

where

S2
n,m =

∑n
i=1(Xi −Xn)2 +

∑m
i=1(Yi − Y m)2

n+m− 2

An unpaired two sample t-test to the level α employs the decision rule

D(X) =

{
H0 T (X,Y ) ∈ [qα

2
, q1−α

2
]

H1 otherwise

where qα
2

and q1−α
2

are the quantiles of the tn+m−2 distribution

Remark about statistical test structure:

• There is a test problem H0 vs H1

• There is a statistical test that can be computed from the observed data

• Under H0 the test statistic has a well-known distribution

• the user specifies the test level α ∈ [0, 1]

• A rejection region is specified such that under the null-hypothesis the probability that
the test statistic takes values in the rejection region is bounded by α (erro of type 1, i.e
rejecting H0, thought is true).

• if the test statistic takes value in the rejection region, the alternative hypothesis is
confirmed

3.1 Confidence interval

Definition 68 (Confidence interval (CI)) Consider a random sample X ∼ Fθ with θ ∈
Θ. An interval [L(X), U(X)] that contains the unknown parameter θ with probability 1 − α
is called a 1− α confidence interval for θ we have

∀θ ∈ Θ : Pθ(L(X) ≤ θ ≤ U(X)) ≥ 1− α ⇔ inf
θ∈Θ
{pθ(L(X) ≤ θ ≤ U(X))} ≥ 1− α

where U(X), L(X) are statistic.

Definition 69 (Connection between tests and CI) Consider a random sample X ∼ Fθ
with θ ∈ Θ. For every θ0 ∈ Θ we can formulate the test problem

H0 : θ = θ0 H1 : θ 6= θ0

Assume we can for each θ0 ∈ Θ perform a statistical level α test with test statistic W (X) and
rejection region Rθ0. Then a 1− α confidence interval for θ0 is given by

CI(X) = {θ : W (X) 6∈ Rθ0}
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Remark: Note that the true parameter θ0 is in CI(X) with probability 1− α.

Definition 70 (Wald test and confidence intervals) Recall the definition of asymtoti-
cally efficient for the maximul likelihood estimator of a random sample X ∈ Fθ. Then, the
asymptotic 1− α confidence interval for θ is

θ̂ML,n ± q1−α
2

1√
n · I(θ̂ML,n
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